深度学习的世界不仅仅是dense层。您可以向模型添加数十种图层。(尝试浏览 [Keras]文档以获取示例!)有些类似于dense层并定义神经元之间的连接,而有些则可以进行其他类型的预处理或转换。 在本文章中,我们将了解两种特殊层,它们本身不包含任何神经元,但会添加一些功能,有时可以以各种方式使模型受益。两者都常用于现代模型结构中。
Dropout
其中第一个是“dropout 层”,它可以帮助纠正过拟合。 在上一篇文章中,我们讨论了网络学习训练数据中的虚假模式如何导致过度拟合。为了识别这些虚假模式,网络通常会依赖于非常特定的权重组合,一种权重的“阴谋”。但是,它们往往很脆弱:删除一个,阴谋就会