第八、神经网络:表述(Neural Networks: Representation)
8.1 非线性假设
参考视频: 8 - 1 - Non-linear Hypotheses (10 min).mkv
我们之前学的,无论是线性回归还是逻辑回归都有这样一个缺点,即:当特征太多时,计算的负荷会非常大。
下面是一个例子:
当我们使用$x_1$, $x_2$ 的多次项式进行预测时,我们可以应用的很好。 之前我们已经看到过,使用非线性的多项式项,能够帮助我们建立更好的分类模型。假设我们有非常多的特征,例如大于100个变量,我们希望用这100个特征来构建一个非线性的多项式模型,结果将是数量非常惊人的